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ABSTRACT 

This paper introduces a direct solution of the frequency-dependent, GTD- 
based, scatterer-model parameters leading towards a new modern spectral-estimation 
technique to be used for enhanced, super-resolution radar analysis. The overcom- 
plete nature of the full GTD scatterer-model basis (positive and negative half-integer 
power laws) is recognized and overcome by introducing the vector-channel method, 
well known from communication theory. This physically motivated discrete-model- 
based analysis eliminates the need for computationally intensive and potentially 
nonconvergent local optimization procedures. Each scatterer is assigned a half- 
integer power law that identifies its cross-section frequency dependence and hence 
restricts the possible underlying physical feature geometries. This analysis opens the 
possibility for vector-attribute-based feature processing for target recognition that 
offers the potential for significant improvement in target identification performance. 

in 
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1.    INTRODUCTION 

In this project, we set out to develop a new modern spectral estimation technique for the 
enhanced super-resolution radar analysis of frequency-dependent scatterers. We explored classifi- 
cation of frequency dependence based on the geometric theory of diffraction (GTD) based model in 
which scatterers are taken to have cross sections proportional to the interrogation frequency raised 
to small positive and negative integer multiples of \. 

Chapter 2 presents general spectral analysis methods as well as radar-scatterer models in 
the context of GTD. We discuss our theoretical development and disclose our new Parametric 
Scattering Law Identification (PSLI) algorithm in Chapter 3. 

In Chapter 4, we compare PSLI and the alternative algorithm, Nearest Exponential Model 
(NEM) with respect to performance on synthetic data with reference to the Cramer-Rao bound for 
frequency-dependence estimation accuracy. In Chapter 5, we compare the GTD models extracted 
from range data with theoretical predictions. We also note several important features of these 
models with respect to band center, bandwidth, and angular dependence. Lastly, we summarize 
our findings and provide conclusions in Chapter 6. 



2. BACKGROUND 

In this chapter, we will provide the reader with a brief overview of scatterer models used in 
this analysis, along with a brief introduction to the geometric theory of diffraction (GTD). 

2.1     SCATTERER MODELS 

This section will present the commonly used scatterer model, along with a natural extension 
that we shall use for the remainder of this paper. To prepare the reader so that they may better 
understand the extended model, we shall provide a brief introduction to Keller's GTD. 

2.1.1     Traditional Scatterer Model 

Traditional analysis assumes that each scatterer takes the form shown in Eq. 1. The scattering 
strength is represented by A. The round trip phase is represented by 4n^-, where x is the range 
to the scatterer, / is the interrogation frequency, and c is the speed of light [12]. 

«(/) = Ae~^ (1) 

Each of the scatterers sum together to create the radar cross section (RCS) of the target for 
each interrogation frequency. 

2.1.2     Extended Scatterer Model: Keller's GTD 

Keller [9] introduced the geometric theory of diffraction (GTD) as a means to approximate the 
RCS of reflectors. GTD assumes the backscattered field originates from a set of discrete scattering 
centers. The scattering centers also exhibit a frequency dependence proportional to a power-law 
parameter, /°, where a = n/2 for small positive and negative integers n. 

s(f) = Afae-^ (2) 

Potter [15] showed that in practice a broad range of targets acts as a sum of these GTD 
scatterers. "Creeping waves" that propagate an integer number of times around an object become 
important for target identification. Table 1 enumerates the a values associated with common fea- 
tures, and Eq. 2 incorporates GTD's power-law parameter, fa, into the scattering model. Thus, 
knowledge of a scatterer's power law would significantly aid identification of a target's scattering 
components. Unfortunately, many existing analysis techniques do not take any frequency depen- 
dence into account. 



TABLE 1 

GTD-predicted a for various features. 

Scattering Geometries Power Law 

Discontinuity of curvature on edge -4/2 

Cone tip -2/2 

Curved-edge diffraction -1/2 

Doubly curved surface, straight edge 0/2 

Singly curved surface (cylinder) 1/2 

Corner reflector, plate 2/2 

Groove, duct 3/2 
Rayleigh scattering 4/2 

2.2     IDENTIFYING n 

After having identified the extended model, it is now important to know how to estimate this 
new power-law parameter, a. We will present some results from an existing technique, the Nearest 
Exponential Model (NEM) [4], as well as introduce a new technique we call Parametric Scattering 
Law Identification (PSLI). 

As will be shown in Chapter 5, the NEM method was known to work well for narrowband 
signals, but failed (typically through failure to converge to a solution) with large bandwidth signals. 
It will also be shown to have a speed disadvantage compared to PSLI since it requires a Newton- 
Raphson iteration. The PSLI algorithm uses direct solutions to estimate both scatterer position 
and cross-section parameters, and no iterative computations are required. 



3.    PSLI THEORETICAL DEVELOPMENT 

Is there a basis for generalizing MSA? Can MSA be generalized to tractably yield power-law 
scatterer components? Why is the MSA problem for exponential models so tractable? Golnb and 
Pereyra [7] identified a general form of problems known as separable nonlinear least squares of 
which MSA is a special case. This allows the problem to be separated into nonlinear estimation 
in a few parameters, followed by linear estimation of those remaining. The following sections will 
show the paths that led ns to our final solution to the a estimation problem. 

3.1     BACKGROUND: STATE-SPACE MODELS AND RADAR 

The radar ranging problem is equivalent to a spectral analysis problem. Some modern spectral 
analysis (MSA) methods [16] find a linear system with the finite state-space model whose natural 
response best fits the given data. The complex plane eigenvalues of the state-space model's state- 
transition matrix (STM) 

• 

• 

identify complex exponentials of the natural response; 

are the roots of the system transfer function; 

• are the roots of the STM's characteristic polynomial; 

• comprise the range solution of the radar problem. 

3.1.1     Positive-integer power systems 

This section will discuss the generalized form of the system that analysis of an STM may give. 
We will first discuss power-law weighted exponentials, along with their state-space models and root 
multiplicity. We will then describe the problems of handling repeated roots, which include finding 
a decomposition of defective matrices and root dispersion under perturbation. It will conclude with 
an overview of e-overcomplete representations. 

For purposes of introduction, we will consider briefly the natural response of a continuous- 
linear time-invariant system since concepts in this environment are often well ingrained from early 
educational treatment of Laplace transform techniques. These observations map readily into the 
discrete-frequency domain of radar processing via state-space methods. 

The natural response of linear temporal systems with multiple roots in the frequency domain 
includes terms comprising positive integer power law (PIPL) weighted exponentials: 

l 
(s-jb) 7T+T 

ltnejbt 

Thus by analogy, identifying PIPL signals from state-space system models involves identifying 
characteristic polynomial roots or, equivalently, eigenvalues with multiplicity. This implies ma- 
nipulation and analysis of STMs with repeated eigenvalues which are often "defective" and hence 
cannot be diagonalized. 



Since eigenvalue solvers will either fail or be ill-conditioned, modern, spectral-analysis meth- 
ods, which are typically based upon eigenanalysis, at present do not address this important case 
and are ill-behaved when posed with such signals. 

3.1.2     Matrix Decompositions for Repeated Roots 

The nature of the power-law dependency introduces root multiplicity. Thus, the STM is 
defective, and commonly used methods to identify eigenvalues are faulty [2]. There are two standard 
matrix decompositions used for finding eigenvalues with multiplicity, the Jordan normal form (.INF) 
and the Schur form. 

The JNF results from one type of matrix decomposition that may be applied to nondiago- 
nalizable matrices for identifying the eigenvalues and their corresponding algebraic and geometric 
multiplicities. This is the decomposition, Eq. 3, where P is any matrix. That is, the JNF is the 
result of a nonunique similarity transform taking A into upper-block diagonal form (J), seen in 
Eq. 1. The eigenvalues are found on the diagonal. 

PJP- (3) 

"   At 1      0 0 - 

0 Ai     1 0 
0 

0 0     Ai 1 
0 0     0 Ai 

A2 1 0 
0 0 A2 1 

_ 0 0 A2   . 

Figure 1. Jordan Normal Form 

Eigenvalues in JNF are identified in blocks along the diagonal where the size of the block 
indicates algebraic multiplicity, and the number of blocks for the same eigenvalue denote geometric 
multiplicity. For example, Fig. 1 illustrates an example JNF matrix with two eigenvalues, Ai and 
A2, with algebraic multiplicities of 4 and 3, respectively. If Ai ^ A2, then each has a geometric 
multiplicity of 1, otherwise, the eigenvalue has geometric multiplicity of 2. 

Traditionally, this is not considered a computational option due to poor numerical behavior. 
We implemented the method described by Kagstom and Ruhe [8] that promised an "accurate 
and stable algorithm, which computes eigenvalue approximations and chains of principal vectors." 
However, we found their method required auspicious choices of problem-dependent, root-clustering 
parameters. 

An alternate matrix decomposition, seen in Eq. 4, is the Schur decomposition. 

A = PTPH 
(4) 



This is a similarity decomposition, again, where the similarity transformation matrix, P. this time, 
is a unitary matrix, and the outcome is upper triangular in form. In the resulting upper-triangular 
matrix T, Eq. 2, the eigenvalues are found on the diagonal. Once again, note that Am may equal 
An for m ^ n. 

A, ? 7 ? ? 

0 A2 
7 7 ? 

0 0 A3 
? 7 

(1 (1 0 7 
(1 0 0 0 A„ 

Figure 2. Schur Form 

It provides numerically stable recovery of eigenvalues whether or not the system is defective 
or near defective. The JNF provides generalized eigenvectors for any matrix, which are not a direct 
result of the Schur decomposition, but are not needed to prosecute the state-space model system 
solution. Hence, Schur method allows the full range of problems to be treated. Demmel [5] provides 
a comprehensive analysis of both the Jordan and Schur decompositions. 

3.1.3     Root Dispersion and Clustering 

Noise perturbation of system roots is linear for single roots but is strongly nonlinear for 
multiple roots [6, 17]. Fig. 3 shows root displacement for a range of perturbations. Note that 
the slope of the curve approaches infinity as the perturbation approaches zero. This is a general 
feature of multiple-root dispersion due to perturbation, as a perturbation of size e will perturb an 

eigenvalue by an amount on the order of O Iff 1, where p is the multiplicity of the eigenvalue. 

Thus, very small perturbations may be expected to have extremely large effects (in comparison 
to their size) on root locations in the case of multiple roots. In effect, a multiple root will never 
directly be found for nonrational matrices and nonrational computation simply due to floating- 
point numerical errors. 

Methods have been developed to recover root multiplicity by clustering the perturbed roots 
[3,8]. Wilkinson [20] observed that multiple roots of polynomials "explode" symmetrically. The 
cluster average turns out to be near the original location! This effect is illustrated in Fig. 4, where 
the signal-to-noise ratio (SNR) is swept from near floating-point precision towards 150 dB. Note 
that as the noise is increased, the roots explode symmetrically outward. 

Unfortunately, these clustering methods are not robust. Clusters and singlet roots due to 
nearby scatterers cannot be separated. The symmetric explosion only represents the fixed-model 
order case well. 
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Figure 3. Displacement due to perturbation. 
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Figure 4- Dispersion of triple root from unit circle. 



A multiple-root (PIPL) signal has an exact representation as an infinite sum of decaying 
exponentials hence a basis consisting of all root placements, isolated and multiple (equivalent to 
a basis of exponentially weighted and power-law weighted signals), is overcomplete. For large, 
finite data (large bandwidth) the problem is thus e-overcomplete. That is, the basis 
set possess a Grammian, which approaches zero rapidly as bandwidth increases; hence 
solutions for representations in this basis become numerically ill-conditioned. 

3.2    DIRECT APPROACH: STRUCTURED APPROXIMATIONS 

Another approach to solving the problem of extracting models from perturbed data that 
maintains a connection to their likely origin as responses described by GTD, is the application of 
structured approximations. The basic notion is to find a matrix that closely approximates a given 
STM but also possesses a structure with the desired attribute of having unit magnitude poles with 
specified multiplicity. Two such methods we investigated included the following: 

• Multiple roots of inexact polynomials via pejorative manifolds 

• Rank reduction of the Sylvester matrix 

3.2.1     Pejorative-Polynomial Manifolds 

The objective of this approach is to find roots with models constrained to have multiple roots 
(pejorative manifolds). "Ill-condition occurs when a polynomial is near a pejorative manifold. If a 
multiple root is sensitive to small perturbation on the pejorative manifold, then the polynomial is 
near a pejorative submanifold of higher multiplicity. Ill-condition is caused by solving polynomial 
equations on a wrong manifold" [22]. For example, given data known to derive from a double-root 
polynomial: 

• Fit a double-root polynomial to the data 

Find p so that x2 + 2pxi + p2 « dj 

• Rather than trying to group the roots later, find q and r such that 

A + (Q + r)*i + Qr ~ di 

then cluster roots p\ and jn that result 

The pejorative-manifold process is well-conditioned, but it involves highly nonlinear optimiza- 
tion and it requires knowledge of the initial multiplicity structure. We applied Zeng's [22] method 
for computing multiple roots of inexact polynomials. Instead of working on the state matrix di- 
rectly, this algorithm is applied to the characteristic polynomial of the state matrix. The first stage 
builds an estimate1 of the root multiplicity. We found this algorithm to be slow and poorly behaved 
and to require1 manipulation of several problem-dependent parameters to obtain convergence. 



Another appropriate quote in this case is: "If the answer is highly sensitive to perturbations, 
you have probably asked the wrong question" [19]. We believe this observation does apply here as 
does one from Stetter who points out that matrix eigenproblems "represent the weakly nonlinear 
nucleus to which the original, strongly nonlinear task [of polynomial root finding] may be reduced." 
We probably moved in the wrong direction when we converted our matrix analysis problem into a 
polynomial analysis problem. This will be borne out by our later results. 

3.2.2    Structured-matrix projections 

This method finds the nearest multiple-root system matrix to that derived from the data 
matrix. We implemented rank reduction of the Sylvester matrix to find the nearest matrix that has 
a given number of roots in common with its derivative—the reverse of the square-free polynomial 
computation. 

This method appeared promising but very computationally expensive. We did not pursue 
this approach beyond proof of concept as it triggered another idea to pursue which becomes the 
center of the research to be described below. 

3.3 INDIRECT APPROACH: SQUARE-FREE SYSTEM MODELS 

There is a special property, we discovered, of the truncated SVD for a multiple-root system's 
data matrix. SVD rank truncation of the data matrix results in a singlet-root (square-free) system 
matrix [11]. The new system eigenvalues lie on radials through the original multiple roots. Since 
all roots were known to originate on the unit circle, they may be reconstructed. 

This is a noniterative, robust process for recovery of root locations. In Fig. 5, the circle 
marks a triple-root location; the solid dots indicate the location of the roots found after matrix 
perturbation; and the triangle shows our recovered root. After successful root clustering, root 
multiplicity can be recovered from a linear least-squares auxiliary solution. 

3.4 NEGATIVE AND FRACTIONAL POWER-LAW ESTIMATION 

This section will describe the problem associated with trying to directly estimate the GTD 
power law, followed by the path we took to avoid that problem. It introduces the idea of using 
a PIPL-representation space with GTD-decision regions as a means of avoiding the problem of 
overcompleteness. 

3.4.1     Overcompleteness of a GTD basis 

GTD scatterers involve negative and positive multiples of half-power laws. The square- 
free-system model-based approach fails if a full GTD power-law basis set is introduced into the 
least-squares problem, because the GTD power-law basis is overcomplete! Yet, this is the natural 
representation for these problems—how do we obtain the desired model given this situation? The 
answer lies in that the PIPL power-law set is a complete basis for all system behavior. 

Ill 
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Figure 5. SVD rank reduced approximation of pole location. 

3.4.2 Vector-channel model with PIPL basis 

The solution to the problem of extracting a full GTD model from only a PIPL 
decomposition parallels the M-ary nonorthogonal vector-channel signal-receiver struc- 
ture. For example, consider the case of 8-ary QPSK as Fig. 6 depicts. The signalling vector space 
is divided into decision regions for each of the 8 QPSK symbols, which can be identified despite 
that the signal space is only two dimensional. 

Similarly, the GTD scattering-center power laws can be identified via decision regions in the 
PIPL-basis space. Fig. 7 shows a = * in a = 0,1 basis. Any negative or half-integer power law also 
yields a unique vector in the multidimensional PIPL space. 

3.4.3 PIPL basis as a vector-feature attribute 

This technique exploits novel PIPL spectral analysis that is compatible with power-law depen- 
dent scatterers. The vector-channel model reduces scattering behavior to one of several well-known 
GTD-feature types, thus a single degree of freedom. Alternatively, we could use the PIPL-basis 
vector without reduction to a GTD model, as in a generalized feature attribute with M-degrees of 
freedom. 

11 
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Figure 6. 8-ary QPSK-signal space-constellation and symbol-decision regions. 
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Figure 7. Example representation of three GTD frequency depencies, f°,f2 and fl, in the FIPL-basis space 
and relevant decision regions for identification of GTD model components from observed FIPL-basis values. 
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The representation of a scatterer-frequency dependencies in terms of a coefficient 
vector referencing the PIPL-basis set reveals valuable multispectral information crucial 
for automatic target recognition (ATR) that would otherwise be obscured by other 
range-estimation processes. The PIPL-basis representation is closely tied to a Taylor- 
series expansion of a scatterer's frequency dependence and thus can represent more 
general relationships than GTD's single-parameter-based /" identification. 

3.5    IMPLEMENTATION 

For the implementation of the PSLI technique, we divided the scatterer-identification process 
into three stages: range estimation, power-law estimation, and amplitude estimation. In short, we 
use the direct state space (DSS) technique to estimate range (x), decision regions to estimate power 
law (a), and least squares to estimate scattering amplitudes (A). 

At a given target aspect angle, the radar system interrogates the target and returns a collection 
of reflection coefficients, 71...n, sampled over a range of interrogation frequencies, /1...,,. 

fi   =   /1+ (*-!)• A/ 

7«      -      Ttarget (fi, 0, 4>) 

(5) 

(6) 

For convenience, we will use F to denote a vector composed of /,- V i 6 (1. n), and T for the 
vector composed of jj V i G (1. n). 

F    = 

r = 

h 

fn 

"I 

In 

(7) 

(8) 

3.5.1     Range Estimation 

The DSS [10,14] estimator first forms the collected reflection coefficients, 7$, into a rectangular 
Hankel a x /; matrix as shown in Eq. 9. The rank of this data matrix represents the number of 
signals to be estimated in the system. The range to each target is proportional to the angles with 
respect to the real axis in the eigenspace of the system's STM. 

Hankel — 

71 72 7b 

72 73 76+1 

la 7a+l  • • la+b- 

(9) 

13 



The rank (N) of the system may be determined by analyzing the singular-value spectrum. 
The diagonal elements of E represent this spectrum. If there is an estimate of the SNR for the 
overall radar signal, one may find N by counting the number of singular values that lie above the 
SNR threshold. 

[ U   E   V ] = svd{Hankel} (10) 

Using the DSS algorithm, we have a choice between two options for computing the STM. 
We used the observability approach for programming convenience in our particular environment 
(MATLAB): 

• Option 1: Observability Approach 

1. Form the observability matrix, O, from the U and E matrices from the SVD. 

0 = U(:A: N)-\/Y.(l:NA:N) (11) 

2. Form 0+ and O- from O by deleting the first and last row, respectively. 

0+    =    0(2:N,:) (12) 

O-    =   0(1: AT-1,:) (13) 

3. Create the STM from the product of the C_ pseudo-inverse and 0+. 

STM = OJ • 0+ (14) 

• Option 2: Controllability Approach 

1. Form the controllability matrix, C, from the E and V matrices from the SVD. 

C = \/E(l : N, 1 : N) • V(:,l : N)H (15) 

2. Form C+ and C_ from C by deleting the first and last columns, respectively. 

C+    =   C(:,2:N) (16) 

C-    =   C(:,1:N-1) (17) 

3. Create the STM from the product of C+ and the C_ pseudo-inverse. 

STM = C+CJ (18) 

We use the Schur decomposition to find the STM's eigenvalues. A;, and then multiply the 
angle of these eigenvalues, Z\, in Eq. 20, with the scale factor k given in Eq. 19 to produce the 
range in meters to each scatterer. 

*  "   -STA7 (19) 

x(i)   =   k-Z\, (20) 

1 I 



3.5.2     Power-Law Estimation 

The o estimator requires the frequencies (F) used in the interrogation pulse, the eigenvalues 
of the STM (A), and the data samples (7). 

We'll first start by defining several notations for convenience, o, refers to one of the range 
of possible values specified in Eq. 21 predicted by GTD, and, in Eq. 22, Fa' refers to taking the 
vector collection of frequences, F, at which the target was interrogated and raising each element 
by that a*. 

01.2 9    =    {-2.-1...... 2} 

fCi 
/r 
fa, 
J n 

(21) 

(22) 

In Eq. 23, we define a* as the collection of power laws in our truncated PIPL basis, and Eq. 24 
once again defines the notation F"1 to indicate raising each element of our frequency vector, F. by 
exponent dj. 

«I,2 

pa, 

{0.1} 

& J 

(23) 

(24) 

Our first step is to form an orthonormalized PIPL basis, JF, as depicted in Eq. 25, where 
Schur decomposition is employed to execute a Gram-Schmidt orthonormalization. We use the 
GTD-predicted a values to define decision regions within our orthonormalized PIPL space by 
decomposing Fa' with T into a library of coefficient vectors, cnbrary- 

('library (') 

orth { [ F"1    Frf'2 ] } 
jpt . pa, 

(25) 

(26) 

Since we are seeking eigenvalues and multiple eigenvalues on the unit circle, admitting no 
exponentially weighted solutions into our basis set, we denote A, as STM-pole estimates normalized 
onto the unit circle in Eq. 27. Then in Eq. 28, we define A; as a matrix whose diagonal is comprised 
of the pole estimate A; raised to each element of our frequency vector. F. 

A   -  A 
1    "    \\\ 

(27) 

L5 



A, 

A,A' 0 0 

0 
li. 

0 

0 0 
- la. 

A,A/ 

(28) 

Our second step to estimating a is to decompose each scatterer's response into our orthonor- 
malized PIPL basis, J-, with the aid of a partitioned matrix, Tpip^. As shown in Eq. 29, each 
partition of TPIPL represents the spatial frequency for each target scatterer identified by A*. 

PIPL [ Ax • T | A2 • T | ... | Am • T } (29) 

Assuming all scatterers have unique ranges, each partition of TPIPL (A; • J-) is separated in 
spatial frequency, and we can use a pseudo-inverse to decompose the sampled reflection coefficients, 
r, into the partitioned column vector of cmeasured as shown in Eq. 30. 

^measured PIPL    1 

Cmeasuredl") 

(30) 

^measured vmJ 

The last step to identifying a scatterer's a, is to search for the GTD o; whose decision library 
coefficients, ciJbrary(Qi)> best match each scatterer's measured basis coefficients, cmeasured- However, 
since a scatterer's measured coefficients may have undergone an arbitrary scaling and phase shift, 
we must first solve for the complex coefficient (3. So, for the i scatterer, we define the scatterer's 
best a match (a,\(j)) to be the GTD Oj whose decision-region library vector minimizes Eq. 31. 

Q Hi) a-j    s.t.     min < 
3 

erfv'J       (-library \J I Clibrary\J ) ed(i) (31) 
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3.5.3     Amplitude Estimation 

At this point, both range and a have been identified for all scatterers in the system. Now we 
may use a least-squares system to solve for all scatterer amplitudes simultaneously. In Eq. .'52, we 
create another partitioned matrix, TGTD, similar to the one used in Eq. 29. However, now we may 
use the correct a for each scatterer, &\(i) instead of our orthonormalized PIPL basis when forming 
each partition1. 

TGTD = [ A, -Faw | A2-F
aw A,„ • F'^c") ] (32) 

Now using TQTD in Eq. 33, we find the least-squared error solution to determine the ampli- 
tudes of all scatterers. 

-t 
(Ml) (33) 

3.5.4     Computational Burden 

PSLI's processing speed is dictated by how quickly the three singular value decompositions 
(SVD ~> ?i3 computations) in the algorithm may be computed. Equations 34, 35, 36, and 37 
approximate the number of required computations, Ntotai, where Nsampies is the number of interro- 
gated frequencies, Nscatterers is the number of scatterers, and NPIPI is the number of basis vectors 
(a) chosen in the implementation. 

3* calculations 

^calculations 

^calculations 

Nfotal 

N2     , samples 

NScatterers ' Npjpi) 
3 

\^ sampl 

\• samples ' -*»scatterers 

£ calculations   '   & calculations T   -^-calculat 

(34) 

(35) 

(36) 

(37) 

3.5.5     Summary 

The process may be summarized as follows. Given the reflection coefficients. F, and the 
frequencies at which the target was interrogated, F, we first find the range to each scatterer using 
the DSS algorithm. Then, knowing the scatterers' ranges, we decompose T into our orthonormal 
PIPL space to obtain a set of coefficients to be used for matching in decision regions defined by 
the GTD Q library. Finally, with knowledge of the range and o of each scatterer, we solve for the 
amplitudes by a least-squares fit. 

As with most research, there is room for improvement. Eq. 2 incorporates the f° power-law 
relationship into the scattering model, and we introduced the PIPL basis to obtain the capability 

'in TGTD. each partition consists of a single column. 
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of generating a generalized multispectral-feature attribute. We could further extend this model to 
tractably identify an arbitrary response dependent on frequency, aspect angle, and other parame- 
ters. For example, a cone requires a four-parameter global optimization: vertex angle, length, and 
two orientation angles. 
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4.    PERFORMANCE BENCHMARK 

This chapter provides an understanding as to how well an unbiased estimator may estimate 
the frequency-dependent parameter a. It first delves into the theoretical bounds followed by results 
which compare the performance of the two known algorithms, NEM and PSLI with the Cramer-Rao 
bound. 

4.1     CRAMER-RAO BOUND 

This section will present both the derivation of the Cramer-Rao bound (CRB) on parameter 
estimation performance and its evaluation for various SNRs and a values. "The CRB provides a 
bound on the covariance matrix of any unbiased estimate of [ A, a,4>, x ]" [18]. For simplicity, we 
only discuss the CRB derivation for the case of a single radar scatterer. 

Following Van Trees [18], we start the derivation by defining our signal and adding white 
Gaussian noise as shown in Eqs. 38 and 39, respectively. In one radar target interrogation, we 
receive a vector of reflectivity measurements, zk, taken at each of fk frequencies and consisting of 
the original reflected signal, yk: corrupted with additive white Gaussian noise, hk. The parameters 
A, a, x, and (j) refer to the unknown attributes of a scatterer: amplitude, GTD a, range, and 
reflection-phase offset, respectively. These unknown parameters are assumed to be real, and A > 0. 

yk    =   Atfe-4^^ (38) 

h    =    Vk + nk (39) 

In Eq. 40, we describe the probability density function (PDF), p~\A,a,4>,x(z)i °f nk as a proper 
random vector [13], where <7?„,„„ is the noise variance. 

N-l 

Pz\A,a,4>A?) = ] [ —5— e-^-y^^-^/^ise (40) 

A.-=0        nmse 

As shown in Eq. 41, we next need to find the natural logarithm of our PDF, L?(A, a, </>, x). 
This function is sometimes referred to as the log-likelihood function. 

L;(A,a,(j),x)    =    hips\A,a.4>,x(z) (41) 
N-l 

-TV In (nalmsJ - —,  ^ (zk - ykf (zk - yk) 
noise  k=0 

N-l 

-N\n (•loise) - -j— Y. ^ (** " Vk) + 32 (** " Vk) 
II.OIHI       I  k=0 
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-Nln(7r(rloise) A2fla + %zk? + K{zk? 

+ J22Af^(zk)smUir^-A 
fe=o ^ ' 
N-l / f \ 

-J22Af^{zk)cosU^-<l>) 
l—n \ / 

To compute the Cramer-Rao bound, we form Fisher's information matrix (FIM) by rinding 
the Hessian of Lg(A, a: <f>, x) with respect to A, a, cf> and x. 

F 

Fu 

F 2,2 

-E{HLz(A,a,<l>,x)} 

f / 

-El 

Fi,i 
0 

d2 

a2 

Dad A 
d2 

d<t>dA 
^^ 

\   OIWA 

0 

F2,2 

92 

da2 

d2 

il.rOo 

2   Y^^-
1
  f2a 

^E£oX/fe
2aln(/fc) 

r«-i f2 

8/4^TT sr^N-1  f2a+\ 
To2- 2^k=0  Jk 

Lz{A, a, (p, x) 

d2 d2 

~d~Ad~4> ~b~Mx. 
d2 d2 

dadd) dadx 
a2 _&_ 

ddp d<j>dx 
a2       a2 

dxd<t>        dx2 

8/t27r \~^N-\  f2a+l     \ 
"3?~2-.k=p Jk 
T^T 

EiV—1    el 

k=0  Jk 

(42) 

(43) 

(44) 

Lastly, we take the inverse of F to obtain the CRB's covariance matrix, C, in Eq. 45. The di- 
agonal of C gives the optimal bounds on estimation variance for the unknown scatterer parameters, 
a\, o\, a2,, and a^. in Eq. 46, which are given in Equations 47, 48, 49 and 50, respectively. 

C 

I    '2       '2      2   ^2i 

F"1 

/ Ci,i 

0 
0 

Ci,2 

C2,2 
0 
0 

0 
0 

<D3,3 

©4,3 V 
diag{C} 

{Ci,i, (D2,2) ©3,3, ©4,4} 

0 
0 

<D3,4 
C4,4 

(45) 

(46) 
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2 (EK flaHfk?) (E^-o1 ft) - (E^-o1 A2aHh))' 

CT-4   =   o^—r n———;—;—~ 72 (47) 

,                                                               2         y-JV-l  J-2Q 
2 j^ "noise Z^A-0  -/A-  . is) 

2 

<TS 

* ((EAIV /A
2
" ln(/*)2) (E^o1 /A

2Q
) - (EAIV fla Hfk))' 

1 2        vpN-1 f2a+2 
1 anoise Z^A-0  Jk 

2 „ 
^2 ((EAI-O

1
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1
 /A

2
-) - (E^O

1
 /A

2Q+1
)' 

J_ "noisec   2^A-=0  A-  

32 ^2 ((Et-o1 /A
2Q+2

) (EAI-O
1
 /r) - (E^-O

1
 rr1)' 

(49) 

(50) 

Upon inspection of Eq. 48, we note that the CRB for a estimation is inversely proportional to 
the SNR, and it also asymptotic-ally improves as inverse bandwidth. We illustrate these relationships 
in Fig. 8, which plots the a estimation standard deviation (aa) for various SNRs from 25 dB to 
-15 dB. From GTD, a must be a small positive or negative integer multiple of A, so we can define 
a soft measure where we assume we may obtain useful a estimates when the standard deviation, 
a0, is less than about A. 

Noteworthy is that Fig. 8 plots aQ assuming the true a equals zero. Other curves are not 
shown here or later because we found little difference between error curves for the different GTD a 
values. This fact is made evident by Fig. 9 in which a plot appears of the difference in an relative 
to a — 0 for various values of a. 
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4.2 BENCHMARK SETUP 

It was desired to know how well the PSLI algorithm performed when compared to both 
the Cramer-Rao unbiased estimator bounds as well as to the NEM algorithm. A benchmark was 
configured that used a single scatterer with various Q'S. The RCS of this single scatterer was 
then analyzed using each method while varying the bandwidth (0.5-17 Ghz) and the SNR (0-60 
dB). Knowing the truth signal, we then plotted the standard deviation of the difference between 
experimental and truth values vs. bandwidth for each SNR. As will be seen, we found that the NEM 
estimators ability to correctly identify the frequency dependence deteriorates when the bandwidth 
is increased, while the PSLI estimator correctly identifies the frequency dependence for narrow 
through ultra-wide bandwidths. 

4.3 RESULTS 

4.3.1 Nearest Exponential Model (NEM) 

The NEM method was developed by Cuomo, et al., at MIT Lincoln Laboratory [4]. In effect, 
a global all-pole signal model is optimally fit to the measured data. The approach determines the 
all-pole model parameters that minimize a particular cost function using Newton Raphson iteration. 

Figures 10 and 11 show NEM's performance at 35 dB and 15 dB SNR, respectively. With 
35 dB SNR, the NEM method performs well until the bandwidth reaches about 4 GHz, at which 
point the error slopes upward for all a values. With a SNR of 15 dB, the NEM algorithm performs 
reasonably well until the bandwidth exceeds approximately 7 GHz to 8 GHz. 

4.3.2 Parametric Scattering Law Identification (PSLI) 

In Figures 12 and 13, the PSLI algorithm demonstrates similar error performance to NEM 
for small bandwidths, but improves noticeably with increased bandwidth or SNR. In both cases of 
35 dB and 15 dB SNR, the PSLI's error approaches zero for large bandwidths, as opposed to the 
NEM method, which degrades. 

4.3.3 PSLI vs. NEM 

Figures 14 and 15 give a side-by-side comparison of the NEM and PSLI algorithms for wider 
bandwidths. It can be seen in both figures that only the PSLI estimate reaches zero error for 
increasing bandwidth, while the NEM algorithm's performance deteriorates beyond a bandwidth 
of approximately 4 GHz. We attribute the lower performance for high SNR and low bandwidth of 
NEM to suspected failure of internal eigenanalysis for clusters of roots too close to admit to usual 
approach. 
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5.    STATIC-RANGE DATA 

Synthetic data is sufficient for benchmark comparisons such as described in the last chapter, 
however actual radar data is needed to determine if the results are useful within the context of 
valuable targets. 

The target referred to as LL-Cone was used for many of our tests. The radar data samples 
for the 1.6 m long target, LL-Cone, were collected at Point Mugu. The data set contains frequency 
samples from 2 to 18 GHz with 20 Mhz sample spacing, taken for 360° of aspect angle with 0.1 
degree sample spacing. We chose to use the horizontally transmitted, horizontally received (HH) 
polarization because certain features were simpler to analyze for this polarization set. 

Figure 16. LL-Cone. 

A detailed specification for this object was provided by Lincoln Laboratory [21]. This target 
has also been analyzed in the past using ESPRIT by Michael Burrows at Lincoln Laboratory [1]. 

Since the dataset has 16 GHz bandwidth, it allows for narrowband through ultra-wideband 
analysis. The RCS data set was collected in a controlled environment, thus giving it a high SNR. 
The frequency-dependence parameter a will be seen to be a function of scattering phenomenology, 
frequency range, and scattering angle. Scatterers and their power laws can be connected to features 
on the target. This frequency dependence may provide strong clues as to the identity of the target. 

Regarding most future figures, if there is an a legend with a plot, then plot color denotes 
the a parameter. If there is a colorbar with a plot, then the plot color denotes energy, not a. To 
read the various LL-Cone plots, please note that at the azimuth angle of 0° the cone tip is pointing 
towards the radar. 
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While many features can be identified in each plot, it may be helpful to begin interpretation 
with the following information about key features: We predict, according to GTD (Table 1), the 
nose tip will have an alpha of 0: the 3 grooves have one of 3/2; and the base edges are -1/2 
at S-band. These features will be described in greater detail below. These GTD predictions for 
LL-Cone's power laws are shown in Fig. 17. 

a=-l/2 
a=o 

Figure 17. Frequency dependence of LL-Cone's scattering features. 

5.1     ULTRA-WIDEBAND ANALYSIS 

This section discusses an ultra-wideband analysis of LL-Cone using bandwidths of 4 GHz 
and 16 GHz respectively, sampled at 20 MHz steps2 at X-band3. We will first present the 4-GHz- 
bandwidth analysis and then the analysis for 16 GHz. 

Using PSLI, we created the plot of scattering-feature range versus target-aspect angle shown 
in Fig. 18. This analysis of LL-Cone used 4 GHz bandwidth, and we color coded each scatterer 
by its estimated GTD power law (a). Although not specifically marked in the figure, scattering- 
energy estimates were used to fade each scatterer's color to provide a sense of reflectivity. We will 
elaborate on PSLI's energy estimates later with Fig. 23 (page 35) and Fig. 24 (page 37). Also, to 
assist with the discussion in the next few paragraphs, we annotated Fig. 18 with some of LL-Cone's 
more prominent features. 

At an aspect angle of -180° and range of -0.88 m in Fig. 18, PSLI identifies LL-Cone's base 
edges with a purple shade to indicate the estimate power law a = — ^. The base edges cross at 

180°, because, when the bottom of the cone is pointing towards the radar system, both bases are 
at an equal range (-0.88 m). As the cone tip is rotated towards the radar system, the two base 
edges move apart from one another until they meet the maximum distance of the base length near 
±90° and 0.1 m. One of the base edges is shadowed by the rest of the target until ~ ±10°, where 
the cone tip is pointing towards the radar. At this point the visible base edge becomes shadowed, 
and the shadowed base edge becomes visible. 

2 At 20 MHz between frequency samples, 4 GHz 
3X-band processing center frequency is 10 GHz. 

201 frequency samples, and 16 GHz ~» 801 frequency samples. 
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Figure 18. X-Band, 4-00 GHz bandwidth. Annotated with scattering feature labels. 
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Also in Fig. 18, another feature predicted by GTD is the cone tip's power law changes with 
aspect angle. At 0° and -0.765 m, the tip's GTD power law is a = 0, which, because the cone tip 
is spherical, agrees with GTD's prediction that spheres have an a of 0 (Table 1). At aspect angles 
to either side of 0°, the cylindrical nature of the geometry due to the transition from hemisphere 
to cone dominates. This cylindrical form causes the a to transition to h, as shown in Table 1. 

Fig. 19 presents the PSLI analysis centered at 4 GHz, and, in it, we identify the first groove 
as the track passing through range -0.52 m at 0°. Note that at 0°, it is attributed with a = | as 
would be expected of a groove according to GTD predictions (Table 1). However, for aspect angles 
approaching 3° the value of alpha changes. This can be attributed to interaction of the groove with 
travelling waves on the cone surface that become more prominent at certain illumination angles. 

In Fig. 20, which is based on the data with a higher center frequency, 16 GHz, we see the a 
assigned to this feature has changed to average value of — ^. This does not result from any failure 
of the PSLI method at wider bandwidths, but rather results from the fact that the frequency 
dependence of a feature is not constant over large ranges of frequency. This is amply demonstrated 
by the graph in Fig. 21 from Cuomo, et al., where we see the first groove's a sweeping from ^ 
down to — j. Note that the estimated power law versus aspect angle has greater variation at this 
center frequency of 16 GHz than at the center frequency of 4 GHz. We attribute this to resonance 
occurring at the higher frequencies. 

Thus in the wider, 16-GHz-bandwidth plot of Fig. 22, we see that PSLI has estimated the first 
groove's frequency dependence to be the average of the values attained over the range described 
by Fig. 21. Of course, this represents a loss of information about the target as the particulars of 
the change of frequency dependence are completely determined by geometric features of not just 
the groove but also by the global geometry of the entire target. In Section 3.4.3, we discuss 
how PSLI offers a means to extract a more complete polynomial model of the entire 
frequency-dependence curve. This generalized ability could be used to provide valu- 
able advanced attribute-feature information to automatic target recognition (ATR) 
schemes as the current example demonstrates. 

As predicted by GTD and described above, a scatterers a changes versus frequency. For a 
given frequency, the a variation over aspect angle can aid in target identification. The resonances 
that occur and the aspect angles at which they occur again lends to the body of information that 
can be used to identify a target. For many of the bandwidths for which we show results, the second 
and third grooves, found starting at -170° and both 0.265 m and 0.4 m, respectively, maintain 
the same power law of a = |, aside from slight resonances that occur. This a value is predicted by 
GTD for grooves (Table 1). 

To illustrate some results from more complex scattering mechanisms, we note that both 
Figures 18 and 22 also contain an example of wave diffraction around the back of LL-Cone. At 0° 
aspect angle and 1.08 m, one can see the double-scattering curves across the base. This is caused 
by the wavefront hitting the cone at one base edge, inducing a travelling wave across the base, 
which then scatters back from the other base edge. We can clearly make the association of double 
scattering with the a estimates in that two -1/2 alpha scattering events do indeed add up to a -1 
attribution of the double-scattering track. 
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Figure 19. Groove, 4-00 GHz center frequency, 4.00 GHz bandwidth 
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Figure 20. Groove, 16.00 GHz center frequency, 4-00 GHz bandwidth 
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Figure 21.  Groove frequency dependence 

Another scattering mechanism appears in Fig. 22, which contains an example of how scatterers 
can sometimes be seen when out of classic visibility range. This is evident for the base edges being 
visible just beyond ±7.2° near 0.825 m, the cone's half angle. This is possible because travelling 
waves generated by scattering from the cone tip travel along the observed cone surface to diffract 
from the base corner and return via the same path. 

We also see two traces in the figure between -50° and -30° and between 30° and 50° at a range 
of approximately 0.6 m at ±45°. This trace appears at less than a base width past the range of the 
corners. Our preliminary analysis based on RCS computations of a simplified model indicate that 
the origin of this scattering is a surface current mode in the cone surface that results in a strong 
induced current source at the top and bottom of the base circumference. That is, these current 
maxima lie at ±90° with respect to the base-roll angle as compared to the usual HH polarization 
maxima at 0° and 180°. Because of its origin as a standing-wave phenomenon, this scattering mode 
is sensitive to the interrogating frequency and bandwidth, a behavior that is indeed observable in 
the various plots that follow. 

Up to this point, the plots of scattering-feat lire range versus target-aspect angle only hinted 
at PSLI's super-energy resolution by using fading of each scatterer's color as an indication of its 
reflected energy. Fig. 23 aids in visually understanding each scatterer's range-energy-a relationship 
by showing how estimated parameters smoothly transition as aspect angle varies. Now there are 
four dimensions of information shown for target-feature identification: aspect angle, range, energy, 
and power law. 

Fig. 24 illustrates PSLI's super-resolution in energy by plotting scattering energy versus aspect 
angle. The variation of energy level versus aspect angle is not a failure of the estimator but rather 
reflects the actual detailed scattering behavior of the complex target geometry (as is strongly 
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Figure 22. X-Band, 16.00 GHz bandwidth 
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Figure 23. X-Band, 4-00 GHz bandwidth, 3D: Range & energy vs. aspect angle, and colored by power law. 
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indicated by the symmetry). Each of these peaks and troughs of the energy plot (and changes 
in alpha) are due to complex interaction of reflected waves travelling along the surfaces of the 
target. Thus the "spread" of Fourier tracks in traditional images that could easily be 
attributed to windowing effects are in many instances actually due to highly angularly 
dependent true variations in scattering amplitudes that can be recovered by PSLI for 
purposes of enhanced target recognition. 

5.2    NARROWBAND ANALYSIS 

Three bands where chosen due to their common use in radar applications for the plots pre- 
sented in this section: S-, X-, and C-bands, centered at about 3 GHz, 5.5 GHz and 10 GHz, 
respectively. The descriptions for the S-band figures in this section hold true for both C and X- 
band, so we placed the C- and X-band plots in Appendix A. The purpose of this section is to show 
that even with small bandwidths, PSLI still obtains accurate a estimates. 

Analysis of narrow bandwidth interrogations at S-band still present useful information for 
target recognition. Fig. 25 shows the target illuminated with only 250 MHz of bandwidth. One can 
see the resonances indicated by periodic fluctuations of Q estimates occurring across the entire target 
azimuth range, but in particular, the aspect angles between ± 90° through 180° show the frequency 
dependence oscillating between the extreme values of a = 2, —2. Note that these resonances are 
symmetric about 0° indicating the target geometry based nature of these features. This is due to 
the symmetry of the target. These resonances were not seen at larger bandwidths, because every 
frequency component gives rise to its own resonance distribution. A large bandwidth solution 
effectively averages over these many oscillating traces resulting in a single smooth curve about the 
average energy return and position associated with the ensemble of traces. The cone tip, found 
at range -0.765 m, has a distinctive and strong pattern between ±45°. It begins as an o of 2 at 
0°, stays constant until about 20°, then oscillates between plus and minus 2. The base edges show 
similar effects, although between ±30° and 60°, the transition passes through all values of a as 
opposed to switching directly from plus to minus 2. 

Using a bandwidth that is twice as large. 500 MHz in Fig. 26, the resonances still occur, 
but with the added feature of resolving both base edges for additional aspect angles. The double 
diffraction at 0° and 0.95 to 1.15 m, above the base edges, seen before in the ultra-wide bandwidths 
above is once again visible. Note that the double diffraction also experiences the same resonances 
that affect the base edges. 

In this same figure, the first and third grooves are not visible, although the second groove is 
oscillating in range and a as seen between azimuth angles ±30°, over the range ±0.2 m centered 
about -0.35 m. Again, this is a result of interrogation at this particular bandwidth which exposes 
the standing waves associated with the geometry of the cone at this excitation frequency. For 
aspect angles > |100|°, even though the cone tip is shadowed, it still has a ghost trace in its place. 
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Figure 24- X-Band, BW=4-00 GHz, Energy versus aspect angle. 
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Figure 25. S-Band, 0.25 GHz bandwidth 
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Figure 26. S-Band, 0.50 GHz bandwidth 

o 
ao 

-8 

39 



As shown in the previous section, PSLI provides super-resolution in energy, as well as range. 
Fig. 27 shows and example of this for S-band with 500 MHz of bandwidth. Note that the resonances 
which appear in the range view, also appear strongly in the energy view. As each scatterer's power 
law transitions from one to another, the energy level similarly changes. This is shown on the energy 
curve found at -30 dB near azimuth angle -45°. 

A zoomed-in look at the nose tip may be seen in Fig. 28. The resonances change roughly 
every 10° with a distinctive and symmetric pattern about the 0° azimuth. 

Much of the detail found in the wideband figures is seen to some extent in Fig. 29. Both the 
first and third grooves are now visible, along with the low returns from the shadowed base edges. 
The change in range estimates due to resonances is much more subdued in the figure. As explained 
above, this is due to having wider bandwidth. The base double diffraction appears strongly in this 
figure. Instead of being restricted to ±10° and near -1.1 m, it now appears to extend at a lower 
energy outward until it meets with the furthest base curves near 0 m. 

Fig. 30 shows the noteworthy performance of the 500 MHz bandwidth analysis with a low 
SNR of 15 dB. Of course the features which were below this SNR threshold are not detected, but 
the strong base edges clearly shine through the noise. The familiar resonances may be seen at the 
outer edges of the figure from ±135° to 180°. They change rapidly from plus 2 to minus 2 without 
passing through an a of 0. The a of minus 2 is prominent near ±75° as well as near 0°. 

5.3    PSLI COMPARISON WITH FOURIER AND NEM 

This section presents comparisons of PSLI with both Fourier and NEM processing methods. 
We will first discuss PSLI's advantage over Fourier processing and then cover the differences between 
PSLI and NEM. 

Fig. 31 illustrates PSLI's superior ability to resolve individual scattering centers as compared 
to Fourier processing for S-band with a 25 dB SNR. Similar plots for C- (Fig. A-6) and X-bands 
(Fig. A-12) may be found in Appendix A. Note that unlike previous target-range plots, these three 
figures use color to indicate scatterer reflected energy and not power law, because Fourier processing 
does not identify frequency-dependent scattering information. 

In the PSLI vs. Fourier figures, PSLI resolves scattering centers with greater precision than 
the blurred Fourier images even with a data set having 25 dB SNR. The blurring of Fourier images 
is due to spectral leakage of scatterer energy across range gates [23]. Super-resolution techniques 
such as PSLI can super-resolve scattered energy levels as well as range. Here, it is noteworthy that 
the PSLI method determines the true energy reflected by each scatterer and not pseudo energy 
which many super-resolution techniques yield. 

If we were to forgive Fourier processing for its lack of power-law identification and super- 
resolution, it appears the only benefit that Fourier processing has over PSLI is speed. Table 2 
presents execution speeds (measured in average pulse repetition frequency, PRF) for Fourier, PSLI, 
and NEM processing bandwidths from 0.5 GHz to 8 GHz attained with a commercial numerical 
package, MATLAB, on a workstation. Here we find that at 0.5 GHz bandwidth with 25 frequency 
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Figure 27. S-Band, 0.50 GHz bandwidth. Energy 
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Figure 30. S-Band, 0.50 GHz bandwidth and 15 dB SNH 
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samples per interrogation, MATLAB"s FFT4 function attains a PRF of 8.24 kHz while PSLI reaches 
234 Hz, about 35 times faster. At 8 GHz bandwidth with 401 frequency samples, MATLAB's FFT is 
about 865 times faster. This is because the FFTW implementation has a worst case computational 
growth of NlogN, while PSLI grows roughly as N   as explored in Section 3.5.4. 

TABLE 2 

Speed Comparison using MATLAB 6.5 on a 3 GHz Intel Pentium 4 running 
Microsoft Windows XP, assuming 8 scatterers for Fourier processing, PSLI, 
and NEM. 

Interrogation Data FFTW PSLI NEM 
Bandwidth # Freq. (PRF) ;PRF) PRF) 

(GHz) Samples Total Range a Total Range (V Total 

0.50 25 8240 950 310 234 470 4 4 
1.00 51 7200 550 200 147 230 3 3 
2.00 101 5625 180 75 53 70 1.5 1.5 
4.00 201 3490 35 15 10.5 15 0.9 0.8 
8.00 401 1557 4.1 3.2 1.8 1.6 0.3 0.3 

However, if we want to identify an individual scatterer's power-law frequency dependence, 
then Fourier processing is not an option, and we must compare PSLI with NEM. From Table 2, we 
find that when processing 0.5 GHz bandwidth interrogations (25 samples), PSLI achieves a PRF 
that is about 58 times faster than NEM's 4 Hz PRE. At 4 GHz bandwidth. PSLI achieves rates 12 
times greater than NEM and, at 8 GHz bandwidth, PSLI is only 7 times faster than NEM. 

At first it appears that PSLI is loosing its speed advantage at higher bandwidths, but recall 
from Chapter 4 that NEM fails for large bandwidths. Comparing PSLI with NEM at 2 GHz 
bandwidth, frequency range of 2 GHz to 4 GHz in Figures 32 and 33, we note that both processing 
algorithms perform similarly for scattering-feature range and power-law identification. However, 
when processing 9 GHz bandwidth data (frequency range of 2 GHz to 11 GHz) as can be seen in 
Fig. 34, the NEM algorithm breaks down for this ultra-wideband processing while PSLI continues 
to perform correctly. In the NEM generated plot, scatterers are completely missing in angular 
segments such as between ±5° and 30° due to lack of Newton-Raphson iteration convergence. 

To summarize, although Fourier processing was faster than PSLI and NEM, it suffers from 
spectral leakage and thus does not provide super-resolution in range or energy estimates. Further- 
more, FFT processing does not extract any frequency-dependent scattering information. Compar- 
ing PSLI with NEM, we found that PSLI is faster, and, due to the PSLI algorithm's direct solution 
technique, PSLI does not suffer from convergence failures for large bandwidth data. 

4 As of MATLAB 6.5, its discrete Fourier transform command, FFT, uses a package called the "FFTW: Fastest 
Fourier Transform in the West" (available from MIT for commercial licensing). 
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Figure 32. NEM, S-Band, 2.00 GHz bandwidth 
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6.    CONCLUSIONS 

In this project we have developed a new modern spectral-estimation algorithm, PSLI, for 
the enhanced super-resolution radar analysis of frequency-dependent scatterers employing a signal 
model based on the geometric theory of diffraction. The novelty of the approach can be summarized 
as follows: 

• It directly treats the problem of extracting positive-integer exponent, power-law dependent, 
scattering-center locations and amplitudes by exploiting a new approach for finding eigenval- 
ues with multiplicity associated with idealized signal models despite matrix perturbation due 
to noise. 

- A Schur-decomposit ion-based approach is introduced that avoids the numerical 
ill-conditioning associated with extraction of eigenvalues with multiplicity which cause 
instability of some estimators and/or require the inclusion of dithering noise sources to 
induce stability. 

- The approach is noniterative in form and hence gives rise to radar estimation with 
fixed execution time—this is an important feature in the system engineering of real-time 
systems. 

- Because it addresses the problem of power law models directly, it is not subject to 
breakdown for narrow or wide bandwidth data. In this sense it anticipates the needs of 
future ultra-wideband radar system. 

• The overcomplete nature of the full GTD scatterer-model basis (positive and negative half- 
integer power laws) is recognized. We introduce the vector-channel method, well known from 
communication theory, to obtain GTD models from the positive integer models that yield to 
a numerically well-conditioned solution. 

• The positive-integer power law (PIPL) decomposition introduced in PSLI directly provides 
a Taylor-series model for the frequency dependence of scatterers that does not reduce the 
description of a feature's characteristic frequency behavior to a single dimension as does the 
GTD model and exponential models. Thus it opens the possibility for vector-attribute-based 
feature processing for target recognition that offers the potential for significant improvement 
in target identification performance. 

• Means were also implemented to further process the data with respect to the identified GTD- 
model half-integer scatterers from the vector-channel decision system to obtain the true scat- 
tered energy from each such scatterer (in contrast to the pseudo-spectral values associated 
with some super-resolution techniques.) 

Thus in summary, PSLI is suited as a direct replacement for Fourier transforms in radar 
imaging applications. This work suggests the need to further investigate the possibility of exploiting 
full PIPL-basis attribute vectors rather than less general GTD basis for enhanced ATR applications. 
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In Chapter 4, we compared the theoretical performance of PSLI with the Cramer-Rao bound 
and with that of the Nearest Exponential Model, NEM, approach for identifying the power law 
for a single, synthetic scatterer. With respect to the Cramer-Rao bound on parameter estimation 
variance, PSLI produces high-quality estimates of scatterer frequency-dependent power laws from 
narrow to ultra-wide bandwidths while NEM fails at large bandwidths due to the failure of the 
exponential model it incorporates to properly represent power-law behavior over large bandwidth 
intervals. 

Chapter 5 continued the evaluation of PSLI using a static-range data set obtained for the 
LL-Cone target. We showed that for S-, C-, and X-bands, PSLI provides accurate and enlightening 
power-law estimates for narrow and wide bandwidths. It was shown that power-law parameter 
values predicted by GTD for certain major target features were indeed correctly estimated by 
PSLI. We then demonstrated the power of PSLI to find more complex scattering mechanisms and 
assist in the identification of those mechanisms through its identification of power-law parameters. 

It was also demonstrated how power-law values can become obscured by sufficiently large 
bandwidths when the power-law dependence is itself frequency dependent. The Taylor-series scheme 
for power- law attribution described above can become a powerful tool in the future for complete 
characterization of features that undergo resonance or other induced changes in behavior over the 
frequency range of the observation bandwidth. 

The PSLI results also help identify the global-object geometry information that is to be 
found in azimuth-angle dependence of the power-law parameter. These variations come about from 
changes in the phase relationships between standing wave modes on the surface of the target with 
respect to the radar aperture as a function of azimuth. 

Of special note is this work also revealed the notion that at low bandwidths, the oscillations 
in GTD power-law parameter values, scattered-energy values, and range values are not due to 
estimation failures, but rather are an integral feature of scattering behavior and potentially are 
another valuable feature attribute for target identification. 

Finally, in this chapter we found PSLI to be faster, as seen in Table 2, than NEM, and 
we again demonstrated that the NEM algorithm has difficulty processing ultra-wide bandwidth 
data. Finally we demonstrated, in comparison to Fourier-based processing, PSLI provided super- 
resolution in range and in energy while retaining super-resolution of features even in low SNR 
environments. We argue that the variation in scattering-center positions versus azimuth angle 
for narrow bandwidth pulses is not a breakdown of super-resolution methods such as PSLI but is 
actually a true measure of the scattering currents in target surfaces and their phase relationships 
with respect to the driving field. By better understanding these RCS phenomena and incorporating 
them into future imaging systems one might hope to someday create a next generation of super- 
resolution imaging systems that effectively pinpoint physical features despite these phenomena. 
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APPENDIX A 

ADDITIONAL STATIC RANGE RESULTS 

The figures in this appendix are similar to those found previously in the report, but at 
differing center frequencies. The descriptions for the the C- and X-band figures are the same as 
found for their S-band counterpart. The caption below each figure states where this similar S-band 
description may be found in the report. 

A.l     C-BAND 

This section contains various figures with center frequencies of 5.5 GHz. 
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Figure A-l. C-Band, 0.25 GHz bandwidth, Description found with Fig. 25 on page 36 in Section 5.3 
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Figure A-2. C-Band, 0.50 GHz bandwidth. Description found with Fig. 26 on page 36 in Section 5.3 
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Figure A-3.    C-Band, 0.50 GHz bandwidth, zoomed on the cone tip., Description found with Fig. 28 on 
page 40 in Section 5.3 
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Figure A-4- C-Band, 1.00 GHz bandwidth. Description found with Fig. 29 on page 40 in Section 5.S 
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Figure A-5.    C-Band,  0.50 GHz bandwidth,   15 dB SNR, Description found with Fig. 30 on page \0 in 
Section 5.3 
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Figure A-6.  Fourier vs.  PSLI, C-Band, 1.00 GHz bandwidth, 25 dB SNR, Description found with Fig. 31 
on page \0 in Section 5.3 
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A.2    X-BAND 

This section contains various figures with center frequencies of 10 GHz. 
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Figure. A-l. X-Band, 0.25 GHz bandwidth. Description found with Fig. 25 on page 36 in Section 5.3 
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Figure A-8. X-Band, 0.50 GHz bandwidth, Description found with Fig. 26 on page 36 in Section 5.3 
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Figure A-9.   X-Band, 0.50 GHz bandwidth, zoomed on the cone tip.. Description found with Fig. 28 on 
page 40 in Section 5.3 
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Figure A-10. X-Band, 1.00 GHz bandwidth. Description found with Fig. 29 on page 40 in Section 5.3 
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Figure A-ll.   X-Band, 0.50 GHz bandwidth,  15 dB SNR, Description found with. Fig. 30 on page 40 in 
Section 5.3 
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Figure A-12. Fourier vs. PSLI, X-Band, 1.00 GHz bandwidth. 25 dB SNR, Description found with Fig. A-12 
on page 40 in Section 5.3 
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GLOSSARY 

ATR Automatic Target Recognition 

CRB Cramer-Rao Bound 

DSS Direct State Space Analysis 

FIM Fisher's Information Matrix 

GTD Geometric Theory of Diffraction 

JNF Jordan Normal Form 

MSA Modern Spectral Analysis 

NEM Nearest Exponential Model 

PDF Probability Density Function 

PIPL Positive Integer Power Law 

PRF Pulse Repitition Frequency 

PSLI Parametric Scattering Law Identification 

RCS Radar Cross Section 

SNR Signal-to-Noise Ratio 

STM State Transition Matrix 

SVD Singular Value Decomposition 
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